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Controlling global stochasticity in the standard map
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A method for controlling global stochasticity in two-dimensional Hamiltonian systems is proposed in a
model of the standard map. We demonstrate that this control method can stabilize global stochasticity into
regular motion running in limited regions. The method is robust under the presence of weak external noise.
Noise-induced intermittency can be found in the case of large noise strength. This is a new type of intermit-
tency similar to the recently discovered in-out intermittency.

PACS number~s!: numbers: 05.45.2a
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Problems in many branches of physics can be reduce
the study of two-dimensional measure-preserving~Hamil-
tonian! mappings. Maps are intriguing, while the correspon
ing equations are simple and deterministic, their solutions
either ordered or chaotic@1#. An example of these maps, th
standard map, corresponding to the kicked rotor, is one
the most widely studied, and it is given by

pn115pn2
K

2p
sin~2pxn! mod 1 ~1!

xn115xn1pn11 mod 1.

The standard map has become a paradigm for the stud
properties of chaotic dynamics in Hamiltonian systems.
K50 the map is integrable and degenerate. An orbit wit
rational winding numberv(p0)5N/M @2# will be periodic
with period M. For K less than the threshold valueKc
>0.9716, . . . , @1#, which corresponds to winding numberz
5(A521)/2 ~known as golden mean!, the phase space i
divided into regions separated by Kolmogorov, Arnol’d, a
Moser~KAM ! @3#, which encircle thep,x torus horizontally,
so that motion inp is bounded to limited regions. AsK
increases the KAM surfaces become sparse, they are c
pletely destroyed forK.Kc . At this point the motion inp is
unbounded and global stochasticity, or global chaos, set

The winding number of the last KAM surfacez5(A5
21)/2 @2# can be represented by the infinite continued fr
tion
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or v5@0,1,1, . . . # @2#. Therefore the last KAM tori will be
approximated by periodic orbits of winding numbers giv
by the approximation of the golden mean. The rational
proximants, i.e., the corresponding winding numbers of th
periodic orbits, arev05 0

1 , v15 1
1 , v25 1

2 , v35 2
3 , v45 3

5 ,
v55 5

8 , etc. These orbits will remain stable whenK decreases
to zero adiabatically. On the other hand, as we increasK
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from Kc , fewer and fewer orbits will remain stable. The la
one, with winding numberv0, becomes unstable atK54.
The existence of island chains corresponding to these p
odic orbits play an important role in the global stochastic
in the range ofKc,K,4. Not much attention has bee
given to the control of global stochasticity in this range ofK,
which is very important for practical applications. For in
stance, if we refer to the tokamak problem, this kind of cha
controlling will correspond to the confinement of magne
field lines to the toroidal chamber, instead of diffusing gl
bally @4#.

In this work we propose a method to control global s
chasticity by means of pinning the variablep to that of the
nearest rational approximants, whenK5Kc . The procedure
is as follows: under the application of control the standa
map becomes

pn115pn2
K

2p
sin~2pxn!1~pn* 2pn! mod 1, ~2!

xn115xn1pn11 mod 1,

wherepn* is the pinning value. In order to control the chaot
motion onto a periodic orbit, we consider the first 15 a
proximants to the golden mean. Extended simulations sh
that the first six of them are enough to take the influence
all the 15 solutions in the controlling task. The value ofp* ,
using the first six approximants plus the golden mean,

$ 0
1 , 1

3 , 3
8 , (A521)/2, 2

5 , 1
2 , 3

5 , (A511)/2, 5
8 , 2

3 , 1
1 %. The

other four arise from the symmetries inp aroundp5 1
2 . At

the nth step, we calculate min(up*2pnu) from all the 15 ap-
proximants, this value ofp* is inserted into Eq.~2! as pn* ,
then we iterate one step to obtain (pn11 ,xn11). With this
new value ofpn11 we repeat the process until we reach
stable value.

The pinning method described by Eq.~2! changes the
dynamics of the original system while it controls its glob
chaotic motion into a regular one. First, under the pinn
control, the conservative system changes into a dissipa
one. Second, the maximum change induced by the con
can be up to 16% of the motion inp, so this is not a weak
perturbation to the original system. Third, the pinning is n
7219 ©2000 The American Physical Society
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onto any certain periodic orbit, but ontop* only ~no certain
x* is pinned!. In other words, this is not a pinning treatme
in the exact meaning. As a consequence, the regular mo
that results from the pinning control being applied genera
does not correspond to the previously unstable periodic
bits, and this is confirmed in simulations.

Figure 1 shows a global chaotic motion being control
into regular period-six orbit. In Fig. 2 we show how th
phase space is changed by turning on the control by pinn
All the chaotic orbits diffusing globally, as well as the islan
chains, turn into localized regular orbits. Figure 2~a! depicts
the phase space of the standard map withK53.9. Figure 2~b!
shows the effect of control: all orbits, regular and chao
turn, into a period-three orbit. For different values ofK, the
phase space structure under control is different, in so
cases, as the one shown in Fig. 2~b!, the solution is unique
while in other cases there may be coexisting periodic so
tions as shown in Fig. 2~c!. The time needed to control th
system, relaxation time, varies as much as seven orde
magnitude depending on the initial conditions and the va
of K. For the cases of Fig. 2, the relaxation time is of t
order of 107 time steps.

We believe that the existence of island chains of stabi
play an important role in the success of controlling chao
orbits. To verify this assertion we apply the pinning meth
of control to a system withK.4. In our calculation we
noticed that our method always controls the chaotic or
whenK,4, and island chains of stability exist. On the oth
hand, forK.4 the success of control depends on the ini
conditions and different value ofK. For some initial condi-
tions, it is successful as in Fig. 3~a!; while for many other
initial conditions or the same initial conditions but differe
values ofK, it is invalid as shown in Figs. 3~b! and 3~c!. The
motions in Fig. 3 have been checked in 109 iterations, and
we can assure they reflect the behavior of the system u

FIG. 1. The stabilized global chaotic motion.~a! pn vs n; ~b! xn

vs n. K51.8, and fromn5500, the control is switched on.
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control. We know thatK54 is the bifurcation point for the
last island losing stability, while the approximants in the p
ning set correspond to the island chains one by one. S
the method is always valid forK,4 while for K.4 it is not
successful in all cases. The complete success of pinning
trol depends on whether the pinning set has elements co
sponding to the island chains that remain stable.

The preceding simulation shows that the pinning meth
is able to control global stochasticity into regular and loc
motion. It remains to show if the method is robust under
presence of noise, which will be important for application
To find this out, we consider the effect of added noise; th

pn115pn2
K

2p
sin~2pxn!1~pn* 2pn!1rjn mod 1,

~3!

xn115xn1pn111rhn mod 1,

^jnjn8&5^hnhn8&5d~n2n8!, ^jnhn8&50,

^jn&5^hn&50,

wherejn andhn are Gaussian white noise generated by
ing the Box-Müller method@5#, andr denotes the intensity
of external noise.

The results are shown in Fig. 4, where we have cons
ered the cases of Fig. 1, withK51.8, under the presence o

FIG. 2. The typical orbits in the phase space (x,p). ~a! The
system without control,~b! and~c! the system under control.~a! and
~b! K53.9, ~c! K51.5, and 107 iterations have been cut.~c! There
are two solutions, one is indicated by circles, the other is indica
by squares.
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noise. The intensity of the noise in Figs. 4~a! and 4~b! is
5.031024 and 2.2531023, respectively. Here we plot only
the variablep. Comparing Fig. 4~a! with Fig. 1~a! we ob-
serve that the final motion is rather well resolved onto
noisy period-six orbit. But most important, the motion

FIG. 3. The typical motions of the system under control wh
K.4 and after the relaxations have been cut off.~a! and ~b! Dif-
ferent initial values withK54.1. ~c! The same initial condition as
that in ~a! while K54.5 .

FIG. 4. The effect of noise on the controlled system correspo
ing to Fig. 1~a!. The noise intensity is 5.031024 and ~b! it is
2.2531023.
a

localized in phase space, it remains within a small neighb
hood of the noise-free orbit and it does not wander over
whole phase space. Therefore we conclude that the pin
method is robust against weak external noise.

To estimate the robustness, we increase the strength o
noise, and show the result in Fig. 4~b!. Noise in this case,
r52.2531023, produces intermittent incursions into glob
stochasticity. In order to better characterize the noi
induced intermittent behavior we calculate the probability
the laminar phase, i.e., noisy periodic phase~NPP! with
length n in the ensemble of NPPs with different length, b
the definition:Pn5Mn /Ntotal , whereNtotal is the total num-
ber of segments of the laminar NNP, andMn is the number
of those with lengthn. Figure 5 shows howPn scales withn.
For small segments of the laminar NPP,n,50, it obeys a
power law scaling, while for large segments the distributi
is roughly exponential. The error increases withn due to
computation limitations. This type of intermittency has sim
lar characteristics to the recently discovered in-out interm
tency @6–8#, which also shows a phase transition, but t
power law decays with an exponent2 3

2 , while in our case
the exponent is approximately2 5

4 , which can be seen by
comparison of our data with the linePn52 5

4 n1const. The
correlation coefficient for the linear fitting in Fig. 5~a! is
20.9994, and the standard error of the slope~Sb! is 0.0063.
In-out intermittency is a generalization of on-off intermi
tency and it is expected to be generic for axisymmetric
namo settings@6#. The possible mechanism for in-out inte
mittency, as well as that for the intermittency in our case
not known and it will be the subject of future research.

In conclusion, we propose a method to control global s
chasticity by pinning a variable to successive approxima
of periodic orbits. The method is described by applying it
the standard map, where the results show that it is effec
in the control task. Global stochasticity~global chaos! can be
controlled into localized regular motion and this can
achieved for a moderately large stochastic parameter ra
KP(Kc,4).

As is well known, chaos in Hamiltonian systems has
different character from that in dissipative systems. A
Hamiltonian systems, especially a two-dimensional syst

-

FIG. 5. The distributions of noisy periodicity phase~NPP! with
different lengthn corresponding to the evolution in Fig. 4~b!, where
the plot is lnP vs ln(n) for n,50, and lnP vs n for n.50, to
evidence the scaling laws.
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have the common feature: when all KAM surfaces have b
destroyed and stochasticity is unbounded, the island ch
of stability will still play an important role in the compli
cated dynamics of the systems. We have shown numeric
that when the island chains of stability exist our method
successful in controlling stochasticity. On the other hand
K.4, when the islands had all disappeared the succes
our task depends on the initial condition. So, if the pinni
set has elements corresponding to which the island ch
remain stable, the pinning method is always effective.

We also show that the method is robust under the p
ence of weak external noise. Noise-induced intermittenc
et
n
ns

lly
s
r
of

ns

s-
is

found in the controlled system when the strength of the
ternal noise is large. The distribution of laminar phases
hibits a roughly2 5

4 power law decay for small length and a
approximately exponential tail for large length of the lamin
phases.
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