PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Controlling global stochasticity in the standard map
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A method for controlling global stochasticity in two-dimensional Hamiltonian systems is proposed in a
model of the standard map. We demonstrate that this control method can stabilize global stochasticity into
regular motion running in limited regions. The method is robust under the presence of weak external noise.
Noise-induced intermittency can be found in the case of large noise strength. This is a new type of intermit-
tency similar to the recently discovered in-out intermittency.
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Problems in many branches of physics can be reduced tvom K, fewer and fewer orbits will remain stable. The last
the study of two-dimensional measure-preserviftamil-  one, with winding numbeiw,, becomes unstable &=4.
tonian mappings. Maps are intriguing, while the correspond-The existence of island chains corresponding to these peri-
ing equations are simple and deterministic, their solutions aredic orbits play an important role in the global stochasticity
either ordered or chaot{d]. An example of these maps, the in the range ofK,<K<4. Not much attention has been
standard map, corresponding to the kicked rotor, is one ofjiven to the control of global stochasticity in this rangekof
the most widely studied, and it is given by which is very important for practical applications. For in-

stance, if we refer to the tokamak problem, this kind of chaos
controlling will correspond to the confinement of magnetic

Pn+1=Pn™ ES“’(ZWX”) mod 1 (@) field lines to the toroidal chamber, instead of diffusing glo-
bally [4].
X4 1=Xn+ Prniq mod 1. In this work we propose a method to control global sto-

chasticity by means of pinning the varialpgeto that of the
The standard map has become a paradigm for the study #farest rational approximants, whigr=K.. The procedure
properties of chaotic dynamics in Hamiltonian systems. FoiS as follows: under the application of control the standard
K=0 the map is integrable and degenerate. An orbit with gnap becomes
rational winding numbei(py) =N/M [2] will be periodic

with period M. For K less than the threshold valué. _ Kk .

=0.9716. . .,[1], which corresponds to winding numbér Pn+17=Pn ZWSIH(ZWX”H(p“ Pn) mod1, (2
=(\/5—1)/2 (known as golden meanthe phase space is

divided into regions separated by Kolmogorov, Arnol'd, and Xn+1=Xp+ Pnig Mod 1,

Moser(KAM ) [3], which encircle thep,x torus horizontally,

so that motion inp is bounded to limited regions. AK \yherep* is the pinning value. In order to control the chaotic
increases the KAM surfaces become sparse, they are Cofotion onto a periodic orbit, we consider the first 15 ap-
pletely destroyed foK>K . At this point the motion irp is _proximants to the golden mean. Extended simulations show
unbounded and global stochasticity, or global chaos, Sets i the first six of them are enough to take the influence of
The winding number of the last KAM surfacé=(\5 4|l the 15 solutions in the controlling task. The valuepsf.
—1)/2[2] can be represented by the infinite continued fracysing the first six approximants plus the golden mean, are
ton {9,458 (B-1)2, 4, 4, & (\B+1)/2, §, 3, 1} The
1 other four arise from the symmetries maroundp=73. At
0=0+—-—7— the nth step, we calculate milp* —p,|) from all the 15 ap-
14— — proximants, this value op* is inserted into Eq(2) asp} ,
1 then we iterate one step to obtaip,( 1,X,+1). With this
1+.-. new value ofp,,, we repeat the process until we reach a
stable value.
or w=[0,1,1 ...] [2]. Therefore the last KAM tori will be The pinning method described by E(R) changes the
approximated by periodic orbits of winding numbers givendynamics of the original system while it controls its global
by the approximation of the golden mean. The rational ap€haotic motion into a regular one. First, under the pinning
proximants, i.e., the corresponding winding numbers of theseontrol, the conservative system changes into a dissipative
periodic orbits, aravy=2, w;=1, w,=3, w3=35, wy,=3%, one. Second, the maximum change induced by the control
ws=13, etc. These orbits will remain stable whirdecreases can be up to 16% of the motion in so this is not a weak
to zero adiabatically. On the other hand, as we incré@se perturbation to the original system. Third, the pinning is not
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FIG. 1. The stabilized global chaotic motidi@) p,, vs n; (b) x,,
vs n. K=1.8, and fromn=500, the control is switched on.
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onto any certain periodic orbit, but onp¥ only (no certain X

x* is pinned. In other words, this is not a pinning treatment b ical orbits i the bh h
in the exact meaning. As a consequence, the regular motion /G- 2- The typical orbits in the phase spaoep). (a The

that results from the pinning control being applied generally>YStem Without controlp) and(c) the system under contral) and

(b) K=3.9,(c) K=1.5, and 10 iterations have been cut) There

gﬁssa?%t t%(i)srr?ssggggrrtr?etjhien F')Sri?r\]/:fl);t?zl:ns’table periodic Orare two solutions, one is indicated by circles, the other is indicated
i . L . by squares.
Figure 1 shows a global chaotic motion being controlled
into regular period-six orbit. In Fig. 2 we show how the
phase space is changed by turning on the control by pinnin
All the chaotic orbits diffusing globally, as well as the island
f#:g‘ﬁa;‘e"gp'géz '(;’fct?]'(':gfagggféakgg’mg%‘."ﬁ;zgreepgg)s the method is always valid fdt <4 while for K>4 it is not

h he eff f I all orbi | d chaoti successful in all cases. The complete success of pinning con-
shows the effect of control: all orbits, regular and chaoticy depends on whether the pinning set has elements corre-
turn, into a period-three orbit. For different valueskafthe

h ruct d trol s diff i sponding to the island chains that remain stable.
phase space structure under control 1S difierent, In Some: g preceding simulation shows that the pinning method

ca;]s_les,_ as ';]he one shor\]/vn in F'gbt))z the S(_Jlu_t|on IS Wg_que' | is able to control global stochasticity into regular and local
while In other cases there may be coexisting periodic Soluz, o |t remains to show if the method is robust under the

tions as shown in Fig. (). The time needed to control the esence of noise, which will be important for applications.

system, relaxat|on.t|me, varies as much as seven orders o find this out, we consider the effect of added noise; thus
magnitude depending on the initial conditions and the value

of K. For the cases of Fig. 2, the relaxation time is of the K

order of 10 time steps. Pnei=Pn— Zsin(27rxn)+(p’,§ —pn) +Fpé&, mod 1,
We believe that the existence of island chains of stability &)

play an important role in the success of controlling chaotic

orbits. To verify this assertion we apply the pinning method

of control to a system wittK>4. In our calculation we

control. We know thak=4 is the bifurcation point for the
Yast island losing stability, while the approximants in the pin-
ning set correspond to the island chains one by one. Since

Xnt+1=XnT Pnr1tp7, mMod 1,

noticed that our method always controls the chaotic orbits b= (namn)=8(n—n"), (&,m,)=0,
whenK <4, and island chains of stability exist. On the other (ko) =) (o)
hand, forK>4 the success of control depends on the initial (£))=(7,)=0,

conditions and different value d€. For some initial condi-

tions, it is successful as in Fig(a&; while for many other whereé, and », are Gaussian white noise generated by us-
initial conditions or the same initial conditions but different ing the Box-Muler method[5], andp denotes the intensity
values ofK, it is invalid as shown in Figs.(8) and 3c). The  of external noise.

motions in Fig. 3 have been checked in’literations, and The results are shown in Fig. 4, where we have consid-
we can assure they reflect the behavior of the system undered the cases of Fig. 1, with=1.8, under the presence of
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FIG. 5. The distributions of noisy periodicity pha@¢PP with

Pn different lengthn corresponding to the evolution in Figi}, where

the plot is InP vs In() for n<50, and InP vs n for n>50, to

evidence the scaling laws.

localized in phase space, it remains within a small neighbor-

0 500 1000 1500 2000 hood of the noise-free orbit and it does not wander over the
n whole phase space. Therefore we conclude that the pinning
method is robust against weak external noise.

FIG. 3. The typical motions of the system under control when  To estimate the robustness, we increase the strength of the
K>4 and after the relaxations have been cut @f.and (b) Dif-  noise, and show the result in Fig(bd. Noise in this case,
ferent initial values withK=4.1. (c) The same initial condition as p=2.25% 1073, produces intermittent incursions into global
that in (a) while K=4.5 . stochasticity. In order to better characterize the noise-

induced intermittent behavior we calculate the probability of
noise. The intensity of the noise in Figs(a#and 4b) is  the laminar phase, i.e., noisy periodic pha®PP with
5.0x10 4 and 2.25¢10" 3, respectively. Here we plot only lengthn in the ensemble of NPPs with different length, by
the variablep. Comparing Fig. 4 with Fig. 1(a) we ob-  the definition:P,=M,/Nota;, WhereN ., is the total num-
serve that the final motion is rather well resolved onto aper of segments of the laminar NNP, aki, is the number
noisy period-six orbit. But most important, the motion is of those with lengtm. Figure 5 shows how,, scales witm.
For small segments of the laminar NP#®<50, it obeys a
power law scaling, while for large segments the distribution
(@) is roughly exponential. The error increases withidue to
computation limitations. This type of intermittency has simi-
lar characteristics to the recently discovered in-out intermit-
tency [6—8], which also shows a phase transition, but the
power law decays with an exponent3, while in our case
the exponent is approximately 2, which can be seen by
comparison of our data with the lifg,= — 3n-+const. The
correlation coefficient for the linear fitting in Fig.(® is
—0.9994, and the standard error of the sl¢pb) is 0.0063.
In-out intermittency is a generalization of on-off intermit-
tency and it is expected to be generic for axisymmetric dy-
namo setting$6]. The possible mechanism for in-out inter-
mittency, as well as that for the intermittency in our case, is
not known and it will be the subject of future research.

In conclusion, we propose a method to control global sto-

3 : chasticity by pinning a variable to successive approximants
021~ AR : e e of periodic orbits. The method is described by applying it to

[ Tl PR the standard map, where the results show that it is effective

: \ \ in the control task. Global stochasticitglobal chaoscan be
0 500 1000 1500 2000 controlled into localized regular motion and this can be
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n achieved for a moderately large stochastic parameter range,
Ke(Kg4).

FIG. 4. The effect of noise on the controlled system correspond- As is well known, chaos in Hamiltonian systems has a
ing to Fig. Xa). The noise intensity is 5010 * and (b) it is different character from that in dissipative systems. All
2.25x10°3. Hamiltonian systems, especially a two-dimensional system,
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have the common feature: when all KAM surfaces have beefound in the controlled system when the strength of the ex-
destroyed and stochasticity is unbounded, the island chairigrnal noise is large. The distribution of laminar phases ex-
of stability will still play an important role in the compli- hibits a roughly— power law decay for small length and an
cated dynamics of the systems. We have shown numericallgpproximately exponential tail for large length of the laminar
that when the island chains of stability exist our method isPhases.

successful in controlling stochasticity. On the other hand for \ye are grateful to Hilda A Cerdeira, for a careful reading
K>4, when the islands had all disappeared the success @f the manuscript and useful suggestions. We acknowledge
our task depends on the initial condition. So, if the pinningthe hospitality of the Abdus Salam International Center for
set has elements corresponding to which the island chairpheoretical Physics during completion of the work. This
remain stable, the pinning method is always effective. work was partially supported by the National Natural Sci-

We also show that the method is robust under the presence Foundation of China and the Science Foundation of the
ence of weak external noise. Noise-induced intermittency i€hina Academy of Engineering Physics.
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